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Visually Abstracting Event Sequences as Double Trees
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Figure 1: Double tree visualization displaying life events of Physics Nobel Prize laureates. Subsequences before and after a user-selected
anchor (here, the doctorate degree) are aggregated as trees. Colors support a comparison based on event attributes (here, nationalities).

Abstract
Event sequence visualization aids analysts in many domains to better understand and infer new insights from event data.
Analyzing behavior before or after a certain event of interest is a common task in many scenarios. In this paper, we introduce,
formally define, and position double trees as a domain-agnostic tree visualization approach for this task. The visualization
shows the sequences that led to the event of interest as a tree on the left, and those that followed on the right. Moreover, our
approach enables users to create selections based on event attributes to interactively compare the events and sequences along
color-coded categories. We integrate the double tree and category-based comparison into a user interface for event sequence
analysis. In three application examples, we show a diverse set of scenarios, covering short and long time spans, non-spatial
and spatial events, human and artificial actors, to demonstrate the general applicability of the approach.
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1. Introduction

An event in data science and visualization corresponds to a par-
ticular happening, incidence, or effect within a temporal sequence.
Events are typically classified through event types. In many scenar-
ios, the user has previous knowledge about events that are particu-
larly important to answer certain analysis questions. Analyzing bi-
ographies of historical figures, key private and professional events
(e.g., marriage, academic degree) can act as important references
and make different biographies comparable. For a soccer analyst,
it might be important to look at what happened before a shot was
taken, to steer the team’s tactics. The event of interest can be con-
sidered as an anchor, and the analysis around it can yield insights
into what led to the event or how it impacted the follow-up. For this
purpose, we define and discuss double trees as a data structure fo-
cused around an anchor that abstracts preceding subsequences in a
tree on the left, and succeeding subsequences in a tree on the right.

To counterbalance the data aggregation through the double trees,
a group of visual comparison analysis tasks [PS16; GGJ*21]
can reintroduce context and reveal relevant deviations and com-
monalities in the event sequences. For example, comparing re-
searchers’ careers by their nationality can give a better under-
standing if and how this attribute impacted the career progres-
sion. It is possible to compare event sequence data at various
levels of granularity. Many techniques for the comparison of in-
dividual sequences (e.g., [WS09; GFL*20]) and mined patterns
(e.g., [CXR18; PW14]) have been proposed. Prior research focus-
ing on the comparison of sequence collections (e.g., [MDM*15;
ZLD*15]), however, is rare and does not extend beyond two collec-
tions. Moreover, in event sequence comparison, information about
absolute time and temporal gaps between events get lost. We aim
to address these challenges by linking these observations about cat-
egories back to the attributes on the event or sequence-level, while
hinting at time differences between consecutive events.

We have developed an approach to analyze what happened be-
fore and after an event of interest, by using the double tree structure
with an interactively defined anchor. It supports the comparison of
up to around ten color-coded categories based on a variety of event
attributes. In Figure 1, the lives of physics Nobel Prize laureates
are modeled as sequences of important events and visualized with
our approach, aligned at the doctorate degree, which can be consid-
ered a major step in an academic’s career. The example discerns the
nationality of the scientists—as the color-coded categories—to in-
vestigate regional differences. Our approach also shows time gaps
between consecutive events as small bar charts on the edges, split
by color in case a comparison is activated. We complement this vi-
sualization with a detail view for inspecting individual sequences
(Figure 5). Interactive selections allow for an iterative exploration
and comparison of relevant subsets of event sequences.

In three application examples, we demonstrate how our novel
approach can help answer common questions in event analytics.
We look at biographical events for physics Nobel Prize laureates
from the early 20th century, we compare in-game actions from the
soccer World Cup final in 2018, and we analyze AI train routing
models that challenged classical operations research techniques.

The paper, hence, introduces a new approach that leverages the
double tree structure to aggregate event sequences around a central

event of interest (anchor). It shows time differences between events
and is enriched with visual event sequence comparison, where com-
parison categories stem from interactively selectable attributes of
the events. The main contributions of this work include

• a formal definition and visual design of structuring event se-
quence collections as double trees,
• a formal definition and visual design of a category-based com-

parison technique for multivariate event sequences within the
double trees,
• a prototypical implementation of this approach called DTVis, in-

tegrated into a user interface that adds functionality for filtering,
selection, and investigation of individual sequences, and
• application examples from diverse domains to exemplify the

general applicability of the approach.

The implementation of DTVis is available on GitHub, and sup-
plemental material contains a video showing its main features.

2. Related Work

Our approach tackles two of the tasks identified by Plaisant and
Shneiderman [PS16]—the analysis of subsequences before and af-
ter an event of interest and comparing sets of sequences. In address-
ing these tasks, our approach shares similarities with other event
sequence visualizations. Moreover, we find related approaches in
visual comparison strategies for hierarchical data.

2.1. Event Sequence Visualization

Guo et al. [GGJ*21] have published a survey on visual analysis
of event sequence data. Our approach fits into the categories 1)
data scale: subsequences and sequence collection, 2) automated
sequence analysis: none, 3) visual representation: hierarchy-based,
and 4) interaction techniques: querying, alignment, emphasis, and
aggregation. Out of the analysis tasks, our work concerns explicit
summarization and the comparison of sequence collections.

Hierarchy-based event sequence visualizations have already
been used for summarization. Lifeflow [WGP*11] displays the se-
quences hierarchically as icicle plots. It is also possible to align the
sequences on one event type which leads to icicle plots before and
after the alignment point, which corresponds to the same double
tree data model that we use. Culy et al. [CL10] have also used the
double tree structure in their work on words in context. However,
their approach is limited to one level of depth on either side of the
alignment point and only fans out the next level for selected chil-
dren. AcitiviTree [VJC09] applied the same concept, but extended it
to consider entire subsequences as alignment points, instead of sin-
gle event types. Even though the aforementioned approaches make
use of the same double tree data structure, they do not discuss it
as a generalizable technique and, for instance, lack a formal defi-
nition and discussion of design alternatives. We discuss in depth a
generalized, interactively adaptable version of the approach and, in
addition, extend it with comparison capabilities regarding interac-
tively defined categories based on event attributes.

Other techniques use a hierarchical visualization for event se-
quences, like CoreFlow [LKD*17] and MAQUI [LLMB18], and
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operate on large datasets with potentially thousands of event se-
quences. However, they follow a different approach and identify
frequent patterns. Whereas this increases scalability, it comes at
the cost of losing information about infrequent patterns and out-
liers, which would still be visible in our approach.

Regarding the comparison task, the survey by Guo et
al. [GGJ*21] attests that there are only few event sequence com-
parison techniques at all [WS09; MDM*15; ZLD*15; QBW*20;
GFL*20], none of which model the data hierarchically. The in-
teraction technique of alignment is only used in one of these pa-
pers [WS09], but comparison is limited to individual sequences
instead of aggregations. Our approach complements previous re-
search by investigating comparison around an alignment point
and considering aggregations of sequences. Most closely related
might be approaches considering the comparison of sequence col-
lections. CoCo [MDM*15] compares two collections guided by
statistical metrics. The authors provide basic statistical summary
metrics for the collections (e.g., difference in the number of se-
quences) to provide an overview and introduce different metrics
on event sequences, temporal distributions, and attributes. Ma-
trixWave [ZLD*15] uses a different approach, where steps in the
event sequences are represented by transition matrices. Multiple
matrices are then concatenated in a zigzag line and encode dif-
ferences between two categories in a color gradient in the nodes.
Our proposed approach is different from the aforementioned ones,
as it can compare up to ten collections instead of just two. Other
event sequence comparison techniques (e.g., [WS09; GFL*20])
differ more fundamentally from our approach, since they do not
compare collections of event sequences, but patterns or individual
sequences. In our approach, we do not consider mined patterns;
the individual sequence comparison is only a minor part in our ap-
proach, supported by the sequence list which is related to time-line
based comparison techniques (e.g., [WS09]). In addition to com-
paring multiple collections of sequences, our approach allows a
more fine-grained comparison as it can consider different event-
level categories within each event sequence, not only one category
per event sequence.

For analysis of temporal differences and absolute time in
event sequences, there are different variations. Some approaches
(e.g., [DPSS16]) extract the temporal information about events
from the sequences themselves and focus on whether certain event
types typically occur sooner or later. Other approaches focus on
the time gaps between consecutive events, although the visual en-
codings vary between these techniques. While MAQUI [LLMB18]
uses the placement on the x-axis to convey this information,
other approaches (e.g., [WG12; GS14]) encode the time gaps into
equidistant links by splitting them into a temporal and a connection
part of the link. Our approach uses a similar representation of time
differences between events. We further incorporate the visual en-
coding of time in both, the individual sequence list and the double
tree. Moreover, the comparison aspect is extended to the temporal
analysis explicitly, unlike in the existing techniques.

2.2. Visual Tree and Stream Comparison

In this work, we compare event sequences within a hierarchical
tree data structure and, hence, our approach relates to visual tree

comparison methods. A survey by Graham and Kennedy [GK10]
proposed a taxonomy based on the number of trees to compare.
Our approach falls under the multiple tree comparison (n > 2) cat-
egory of the taxonomy. Among the limited existing approaches en-
abling comparison of multiple hierarchies, juxtaposition is com-
monly used instead of a consolidated, single representation of a tree
structure like in our approach. For instance, BarcodeTree [LZD*20]
juxtaposes the condensed bar code tree representations, Beck et
al. [BMW16] use a juxtaposed icicle plot representation of hierar-
chies, and TreeJuxtaposer [MGT*03] is a focus+context approach
to compare juxtaposed trees represented in a dendrogram layout.
Another general difference of our approach to these tree compari-
son methods is that we can also compare event-specific categories
(i.e., different event categories in one sequence).

Our aggregated tree representation of event sequences uses col-
ors for comparison. Visually similar to BaobabView [EW11], we
split the edges, use the width to encode the number of transitions
between two event nodes, and color them based on their category.
However, unlike showing decision trees, our approach models and
visualizes the aligned event sequences as two trees with a common
root node. Although not showing trees but directed acyclic graphs,
Set Streams [AB20] shares similarity with our approach but consid-
ers sequences of potentially overlapping set memberships, whereas
events can only belong into one category. Their approach is lim-
ited to comparing two collections of sequences, but also works
with color-coded categories. Sankey-based event sequence visual-
izations (e.g., [PW14; CWM16]) enable comparison using color
coded ribbons. While they focus on comparing the aggregated se-
quences as-is, our approach centers on enabling a condensed com-
parison of subsequences around a selected anchor event type.

3. Double Tree

Event sequences are, by definition, ordered temporally. Many sce-
narios include analysis tasks where the user focuses the analysis
on a specific event type of interest and investigates the behavior
building up to it or following from it [PS16]. With double trees, we
align all event sequences on this specific event type as the anchor—
making it a natural focal point in the visualization as well—and
aggregate what happened before and after into branches, without
losing track of time differences between consecutive events.

The double tree aggregates sequences to enhance the visual scal-
ability. When designing them, we considered different aggregation
techniques. Most notably, we rejected directed acyclic graphs as
an alternative. Directed acyclic graphs lose information about the
provenance of their nodes, as it is not possible to unambiguously
trace back its path to the root (which is the focus of our analysis).
Interactions in a double tree are easier to implement and use; click-
ing a node can select unambiguously the branch up to the root. In
a directed acyclic graph, there might be multiple paths to the root,
and selecting all of them could be unintentional. Moreover, the con-
struction of directed acyclic graphs requires additional parameters,
which might vary between scenarios.
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Figure 2: From a collection of event sequences, we derive sequences of event types τ(S), align all sequences at the anchor (here, B), and
create postfix and prefix trees from the subsequences τ(S−) and τ(S+). Merging the trees at their roots results in the double tree G± with
weights w(v) shown at the top right of each node. The red rectangles indicate in this example the two events of type C (before B), finally
merged in the same tree node.

3.1. Formal Definition

The basic data structures that are subject to our analysis are ordered
sequences of events. Our dataset is a collection of event sequences
C := (S1, . . . ,Sn), with Si := (e(1)i ,e(2)i , . . .) where n is the num-
ber of sequences in the dataset, and the number of events in any
sequence can vary. Each event e ∈ E has a particular event type
τ(e) ∈ T . In our model, we always focus on one event type τc ∈ T
as the anchor and consider all sequences that contain it. If there are
multiple events of the anchor’s event type in as sequence, the first
event will act as the anchor event e∗i in this sequence Si. All se-
quences that contain the anchor will then be cut in two pieces, with
S−i consisting of the subsequence up to and S+i consisting of the
subsequence starting from the anchor event.

From these subsequences, we construct two trees of event types:
a postfix tree for the sequences before the anchor and a prefix tree
for those after. The process is displayed visually in Figure 2. To
this end, from a sequence of events S, we derive a sequence of
event types τ(S) = (τ(e(1)),τ(e(2)), . . .), cut at the anchor event into
sequences τ(S−) and τ(S+). We use these sequences of event types
to construct the postfix tree for all τ(S−i ) and prefix tree for all
τ(S+i ). Formally, we can model these trees as directed graphs G−

(postfix tree) and G+ (prefix tree). Both have the same root vr, and
child vertices are identified by their subsequence up to the root.

Combining the postfix and prefix tree at both of their roots results
in what we consider a double tree G±=(G−,G+). With the postfix
tree on the left and the prefix tree on the right, time is read from left
to right in the double tree.

Each vertex v in these trees, represents a set of events of the same
type that are at the start (if v is in G−) or the end (if v is in G+) of a
subsequence to the root (red rectangles in Figure 2). We can assign
a weight w(v) = |v| to each vertex v counting the number of events
it represents. Directed edges dv,v′ := {(e,e′) ∈ v× v′|∃i with Si =
(. . . ,e,e′, . . .)} are sets of tuples of consecutive events that are con-
tained in the sets v and v′ respectively. The weight of an edge is
simply w(d) = |d|.

Moreover, each event has a timestamp t(e) that determines
its position in the sequence. The time difference between two
events is defined as δ(e,e′) = t(e′)− t(e) > 0 in a sequence Si =
(. . . ,e,e′, . . .). Along similar lines, we define the time difference
δ(v,v′) between two consecutive vertices as the average time dif-

ference between all consecutive events that are contained in v and
v′ respectively and occurred in the same original sequence.

3.2. Layout and Visual Encoding

We visualize the double tree data structure G± described above
as a node-link diagram. We first explain its base layout and main
visual encodings as shown in Figure 3 without any highlighting of
categories and selections.

The tree layout is based on the tidy tree algorithm [RT81] with
adjustments to the position of the root node vr to fit the trees on
both sides. The single node at the center is the merged root and
represents the currently selected anchor τc. A vertical line separates
the double tree into events that occurred before the anchor (left,
G−) and after (right, G+). Sequences that do not contain an event
of the anchor’s event type are not displayed.

Sibling nodes in trees—at least when being drawn—have an or-
der (here, vertically arranged from top to bottom). To reflect this
order in the vertical arrangement of the tree branches, sequences
that appear early in the collection tend to be placed towards the top
of the double tree visualization. Figure 3 shows this arrangement,
as the first exemplary event sequence A,B,C,B is connected by the
topmost links. However, sequences later in the dataset might extend
an already existing branch at the top of the double tree. Wherever
the new and existing sequences diverge, the existing sequence will
be placed above the new one.

Each node v represents a set of individual events that share the
same subsequence to the root node vr. We encode the number of
represented events w(v) in the nodes’ area, constrained with a min-
imum and maximum to improve legibility. The way we merge se-
quences leads to trees where nodes closer to the center represent
more events. To account for this, we do not use equal distances
for each horizontal layer. Instead, nodes close to the center occupy
more space. We compound this design choice by using a shaded
background that is darker on the outer sides depending on the depth
of trees, guiding the users’ attention towards the lighter, higher-
contrast center of the visualization.

The common type of the events represented by each node is
mapped to a visual identifier. If possible, we use application-
specific icons so that the corresponding event types of the nodes
in the tree can be quickly understood without sacrificing a lot of
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Figure 3: Double tree, without active categories, with the same
data as in Figure 2. Time differences between all events are equal.

screen space. If no icons can properly represent the event types, a
single character or short string (e.g., the initials of the event type
names) can be used as a fallback. In both cases, this encoding is
also explained in a legend at the top of the view (Figure 1).

The root node vr marks the first event of the selected event type
in a sequence as the anchor τc. A node of the same event type might
reappear in the tree G+ on the right, which could be of specific
relevance for analysis. To allow quick retrieval of these events with
the selected event type, we mark all nodes of that type and apply
a hatch pattern to their otherwise unfilled inner area (e.g., nodes B
in Figure 3). All other event types can also occur multiple times on
both sides of the double tree. To quickly identify all such cases, the
user can hover a node—including the root node—which highlights
all other nodes with the same event type.

The links dv,v′ in our tree connect the nodes and also encode two
attributes of these transitions. First, the width encodes the weight
w(d) of the link. Hence, subsequences that occur in many event se-
quences have thicker links (Figure 3). Secondly, the average time
differences δ(v,v′) between the source node and the target node are
encoded. By default, absolute time is displayed (i.e., longer link
means more absolute time differences), but can be changed to rela-
tive time (i.e., longer link means longer share of the durations of the
sequences). We have considered four design alternatives to convey
these time differences within the links (Figure 4). Alternative (1)
arranges the nodes along the x-axis according to their exact time
differences, which has a big impact on the overall double tree lay-
out and leads to issues when comparing the lengths (number of
nodes) of different branches. The clock metaphor of alternative (2)
causes occlusion with the event identifier. Moreover, it is problem-
atic to interpret when the time difference is absolute, such that the
pointers of most sequences would not complete a full circle, just
like alternative (3) where the ring segments would not complete a
full circle. All three of the aforementioned alternatives also suffer
from difficulties in splitting the time difference into multiple cate-
gories, as it is necessary for category-based comparison. Hence, we
decided to integrate alternative (4) into our visualization in which
the time difference is encoded in the length of the link, and the link
is then connected to the target node as a thin line. The time dif-
ferences econded like this hint at absolute time, but it remains an
open challenge to make timestamps of specific events readable and
comparable within the double tree.

The beginning of an event sequence is explicitly indicated by an
incoming link, top-left of the corresponding node representing the
first event. Conversely, when the link goes to the bottom right of
the node, the event sequence ends with the event (e.g., Figure 3).

A B C D

A B C D

A B C D

A B C D

1)

2)

3)

4)

Figure 4: Design alternatives to encode temporal extension be-
tween events: (1) position on the x-axis, (2) clock metaphor, (3)
ring segments, (4) link length (selected alternative).

4. Category-based Comparison

The double tree visualization allows us to investigate collections
of event sequences around the anchor. Using the visualization with
real data, we considered it natural to compare the sequence pro-
gressions of different collections, e.g., how different soccer teams
are building up towards shots. Instead of creating multiple double
trees side-by-side, we decided to leverage tree comparison tech-
niques and integrated the comparison aspect into the double tree
itself. We generalize this to select the comparison categories inter-
actively, based on the attributes of the events.

Event attributes can be categorical (e.g., the person who ex-
ecuted the event), or numerical (e.g, the score or rating of the
event). In some cases, these attributes are inherited from the se-
quence of events it belongs to (e.g., the whole event sequence is
performed by the same person). To process and visualize event-
level and sequence-level attributes in the same way, we assign the
sequence level attribute to all events within that sequence. We uti-
lize these attributes to define event categories that we can compare
within the double tree.

4.1. Formal Definition of Categories

These event categories define a partition P of the events E, from
which the individual event sequences are assembled, yielding a
family of sets P = {E1,E2, . . . ,Em} with

⋃
i Ei = E and Ei∩E j = ∅

for i 6= j. This way v∩Ei is the set of events represented by ver-
tex v that fall into the category of Ei. This partition can be used to
subdivide the weight of nodes of the double tree G± into weights
w(v∩E1),w(v∩E2), . . . ,w(v∩Em) with ∑i w(v∩Ei) = w(v). Each
weight w(v∩Ei) summarizes the number of events from category
Ei at the position in the sequence that corresponds to the position
of v in the double tree.

Each directed edge in the graph is also subdivided into the cat-
egories. Edge dv∩Ei,v′ represents the tuples of consecutive events
that are contained in v the given partition Ei and v′. Analogously,
we can define the time difference of the categories for each link
such that δ(v∩Ei,v′) yields the time difference from the source to
the target when only considering the category Ei at the source.

In contrast to the event types, which are fixed and define the
structure of the double tree, we use such event categories and re-
sulting event partitions as a transient subdivision, interactively de-
fined on different attributes of the events. Changing the definition
of the categories does not alter the structure of the double tree, but
only the subdivision of weights of the nodes.
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Figure 5: The full interface with controls and raw event sequences on the left and the main tree visualization on the right. The data shows
event sequences from the soccer World Cup final 2018 that led to shots.

4.2. Adaptable Visual Comparison

We allow for the interactive choice of an attribute of the events
that groups events into partitions. The user can select this attribute
from which the categories are derived. This process is straightfor-
ward for categorical attributes. If the selected attribute is numeri-
cal, however, the partition can be derived from user-defined data
ranges, which results in two categories Over and Under or equal.
The temporal attribute that is used in the links can also be selected
as a numerical attribute. Each category maps to a distinct color as
shown, for instance, in Figure 5 for two and in Figure 1 for ten cate-
gories. All visual elements representing a category can be hovered,
which will highlight all other visual elements representing the same
category (Figure 10, middle).

The relative sizes of these categories of events are visualized as
ring fractions of the respective colors around the nodes in the dou-
ble tree. The angles of the fractions correspond to the weight of the
categories w(v∩Ei) in relation to the total weight of the node w(v).
The links also split up, where the color is determined by the source
node in the specific sequence, since we read all links from left to
right. The widths of these colored links display the weights of the
links w(v∩Ei) given the category represented by the same color.
The lengths of the links are also adjusted to show the average time
differences for the respective category δ(v∩Ei,v′), which allows
for their comparison across the selected categories for each link.

5. DTVis

We implemented the design discussed above in a tool called
DTVis. The single-page web application is written in Typescript
and uses the Vue.js framework and D3.js [BOH11]. The ap-
plication is heavily modularized into components, to increase
reusability and extensibility. Transformers from the file structures
used in our datasets to the internal data model of DTVis ex-
ist and can be taken as a template to add new transformers for

other data sources. All source code and data is publicly available
on GitHub at https://github.com/vis-uni-bamberg/
event-sequence-double-trees.

Within DTVis, we integrate the double tree visualization enriched
with category-based comparison into a user interface (Figure 5). A
control panel on the top left allows determining the event type of
the anchor and defining the categories for comparison of events and
sequences. The user can also select whether the time difference en-
coded in the length of the links should be absolute or relative to the
duration of the sequence they occur in. The individual sequences
contained in the double tree are shown in the sequence list at the
bottom left. Ensuring consistency, the time differences and categor-
ical information encoded in the links are the same as in the double
tree visualization, and hovering the sequence in the list will high-
light the respective branches of the double tree (Figure 9).

Depending on the dataset, the double tree might get complex,
but further filtering of event sequences can help to focus on a spe-
cific aspect and simplify. We incorporate multiple interaction tech-
niques to set the focus of the analysis and to inspect details of event
sequences. Through a query builder, the user can provide a subse-
quence of event types, including wildcards in between. Sequences
have to match the query to be displayed, which can greatly reduce
the size of the double tree.

In the double tree visualization, the user can highlight branches
by clicking on the nodes. The highlighting is propagated to the
list of sequences, where the corresponding subsequences are also
highlighted (Figure 5). Multiple branches can be highlighted on
the same side of the double tree. In this case, no single event se-
quence can satisfy all of them. Hence, the individual sequences are
highlighted if they match any of the mutually exclusive branches.
It is also possible to highlight branches on both sides of the dou-
ble tree. The individual sequences in the sequence list are sorted by
the degree to which they align with the highlighted branches in the
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Figure 6: Marie Curie and Lawrence Bragg have not been pro-
fessors before winning the Nobel Prize. Orange means the persons
were 35 years or younger, while blue means they were older.

double tree. At the top are those sequences that contain highlighted
branches on both sides, followed by those matched only on the left
and by those matched only on the right.

6. Application Examples

To demonstrate our approach, we apply it to three domains, namely,
biographical data, soccer event data, and routing data from simu-
lated trains. This set of scenarios is diverse regarding the length of
sequences and time spans, contains spatial and non-spacial events,
and events from human and artificial actors. Hence, the scenarios
highlight the general applicability of our approach.

6.1. Biographies of Physics Nobel Prize Laureates

For our first application example, we manually collected biograph-
ical data from public sources about winners of the Nobel Prize in
physics between 1901 and 1921. Each scientist represents one event
sequence to a total of 25. We chose nationality and age of the per-
son at the time of the event as attributes. Both of them are on the
event level. The event types we collected range from their birth,
over academic degrees, the Nobel Prize, to their death; they can be
seen in the legend in Figure 1.

The Prize: When selecting the Nobel Prize as the anchor, we
observe that most of the winners did not have any events between
winning the Nobel Prize and their death , even though the link
shows that the average time between those events was rather large.
Those scientists who had events that followed were comparatively
young when receiving their Nobel Prize. Two of them only started
their first professorship after being awarded the Nobel Prize.
Selecting the professorship event type to the right of the root (Fig-
ure 6), we see in the sequence list that one of them is Marie Curie,
who, as a woman, was denied university admission in her home
country, and only took over the professorship of her husband after

Figure 7: Out of all 22 scientists who received a professorship, five
of them went abroad shortly before their appointment.

his death. The other person to receive his first professorship after
his Nobel Prize is Lawrence Bragg, who was 25 years old when he
was distinguished with the award together with his father.

The Doctorate Degree: To investigate when scientists have re-
ceived a doctorates degree , we select it as the anchor (Figure 1).
If we define the categories by nationality of the person at the time of
the event, we quickly see that only people from six different coun-
tries received a doctorates degree at all, even though the dataset
contains people of ten countries. Most prominently, no British lau-
reate acquired a doctorate degree, which might be surprising since
they are tied with Germany for most Nobel Prizes won in the se-
lected time range. The historical reason is that the PhD degree was
only adopted in 1917 in the United Kingdom.

The First Professorship: If we are more interested in the career
paths of the scientists, we can select the first professorship as the
anchor (Figure 7). We observe that multiple scientists went abroad

as the event before gaining their professorship and highlight that
node. Through the short time differences shown in the links, we can
see that these five scientists received their professorship shortly af-
ter emigration, indicating that this might have been a career accel-
erator or the reason to move abroad. We can define categories by
the age and interact with the slider to select the threshold for the
Over and Under or equal categories, which confirms that between
zero and two years laid between the events.

6.2. Key Actions in Soccer Matches

The next domain concerns event data from a soccer match. We
look at the final of the FIFA World Cup 2018 between France and
Croatia. The data is taken from Statsbomb [Sta] and contains about
3,500 events like fouls, shots, or dribbles. To reduce the size of the
dataset, we excluded several event types that distorted the double
tree due to their frequency. The two most notable event types we
removed are passes and carries, which are the most common event
types in the data. Furthermore, we have promoted some subtypes
to regular event types where meaningful (e.g., main type: shot, sub-
type: goal). The sequences in this dataset are the different ball pos-
sessions, which change whenever the opposite team acquires the
ball or the ball goes out of play. Some attributes we collected are
on the event level (e.g., players) and others are on the sequence
level (e.g., halftime).

Set Pieces: In the match, there have been a combined 25 corners
and free kicks. These events always start a new event sequence;
hence, we see that the double tree in Figure 8 only has branches
on the right side. From the ring fraction of the root node, we see
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Figure 8: Sequences from the soccer World Cup 2018 final that
started with a set piece (corners or free kicks). All branches that
led to a shot (missed), goal, or own goal are highlighted. Events
are orange for France and blue for Croatia.

that France had almost as many events of the set piece event
type as Croatia. This is information we might typically see in any
basic scoreboard of the match. However, if we look more specifi-
cally into the sequences and check which of these sequences ended
in a shot , goal , or own goal , we see that, of the origi-
nal 25 sequences, only nine remain (which are highlighted in Fig-
ure 8). Looking in more detail, we observe that Croatia has also
scored an own goal in one of the highlighted sequences. After the
set piece from France a failed block attempt, led to the own
goal, which we can also draw from the visualization. While analyz-
ing sequences from one game and one type of attack only can be
anecdotal, it demonstrates the additional information our approach
provides over widely used statistical match summaries.

Shots in each halftime: Our visualization can quickly show us
that the offensiveness of the teams was entirely different in the first
half compared to the second half of the match. Figure 5 displays
the sequences that led to shots from either team, and the colored
categories indicate whether the sequences happened in the first or
second half of the match. While the subsequences before the shot in
the second half show events from regular play, almost all the shots
in the first half resulted from a set piece. Investigating the links (ab-
solute time) on the left side of the double tree, we also notice that
the sequences from the first half occurred in quick succession—as
we would expect for a set piece. The sequences from the second
half have much longer links (e.g., those selected in Figure 5), indi-
cating larger time differences between the events, and were likely
resulting from a slower, more controlled setup of attacks.

6.3. Routing of Simulated Trains

Flatland [MNL*20] is a virtual environment to promote research
addressing the generic vehicle re-scheduling problem [LMB07].
Each map consists of railway tracks and trains. The trains origi-
nate near stations, can only move forward on tracks, wait at their
position, might freeze for a few time steps due to random malfunc-
tions, and end once they reach their destination station. The goal is
to schedule all trains to reach their destination in the shortest time.
The top submissions of the competition organized for the NeurIPS

2020 conference [LSS*21] were an operations research (OR) tech-
nique, followed by three solutions based on reinforcement learn-
ing (RL). We selected Level 20 Map 3 from the competition
dataset [The21], with 14 stations and 98 trains to schedule. Us-
ing an existing visual analytics tool [AWWB22], we defined 13
regions-of-interest based on their importance in the structure of the
rail network (R1–R13 in Figure 9, left; labeled 1–13 in all visual-
izations). R6 (a single-cell region) is an important junction of tracks
from many directions, R9 and R10 are parallel tracks for trains
transitioning between R8 and R6. The sequences in this dataset are
the individual trains for each scheduling approach, and the events
are traversals of marked regions. Attributes are the approach that
scheduled this train (sequence level) and the time step of the re-
gion’s traversal (event level).

Waiting On Tracks: With the links in the double tree, we inves-
tigate the elapsed time for trains going from one region to another.
Anchoring the double tree on R13, we focus on the links from R12,
on the bottom left, up to the root (Figure 9, right). The widths of
the colored links suggest that OR_old_driver scheduled a higher
number of trains between these two regions. The time difference
encoded in the red links shows that the trains, on average, took
more time steps (absolute time) between the two regions than those
of other scheduling techniques. Although regions R12 and R13 are
nearby, there are many parallel tracks between them. The trains
might have waited on the parallel tracks to allow oncoming trains,
which could have led to a higher time to reach R13.

Revisiting a Region: Trains visiting a region more than once
can indicate inefficient planning. To explore revisits, we focus on
region R13, set it as the anchor, and select its repeated occurrence
in the tree on the right. In Figure 9 (right), we see two branches
with repeated visits to the region (R13 → R4 → R13 and R13 →
R12 → R13). Several trains, scheduled by all techniques except
RL_netcetera, visited the region R13 more than once (absence of
orange colored ring segment in the R13 nodes on the right side
of the double tree). Investigating further to understand the revisits,
we select regions R3 (on the left) and R12 (on the right) to order
the sequence list, as shown in Figure 10 (right). Hovering over the
sequence R3→ R4→ R13→ R12→ R13→ R4→ R3 in the list,
the path gets highlighted in the double tree (Figure 9, right). The
sequence implies a train moving east in R3 passed through R4 and
R13, was looped around using structural layout in R12 to change
the direction of movement, revisiting R13 and finally R3, but now
moving west. Since the trains cannot move backwards, the cyclic
maneuver might have been necessary to change the direction of a
train. OR_old_driver exhibited this specific maneuver twice (first
two rows in Figure 10, right). The next two sequences in the list
show a similar behavior by trains of RL_marmot that circle from
region R12 over R13 and R4 to R11, while trains could have moved
directly from R12 to R11 by moving west.

Uni-directional Usage of Parallel Tracks: Next, we compare
the usage of two parallel tracks, R9 and R10 between regions R8
and R6. Out of the two connected regions, we choose R6 as the
anchor and select all occurrences of R8 on both sides of the dou-
ble tree (see, Figure 10, middle). Hovering over the red colored
ring segment of OR_old_driver, we infer that it scheduled all trains
from R8 going to R6 only via R10 (no red colored ring segment
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# trains reached destination

OR_old_driver 98/98

RL_jbr_hse 96/98

RL_netcetera 26/98

RL_marmot 48/98

R6

Figure 9: Flatland map with regions-of-interest R1–R13 in gray and trains as black circles (left). Filtered and selected event sequences to
show repeated visits in R13 from R3 and R12, comparing the performance of the four scheduling techniques (right).

Figure 10: Sequences showing transition of trains through the region R6 in Flatland (left). Comparing the sequences based on scheduling
techniques (red is highlighted with a black border because it is hovered) and focusing on the movement of trains between two regions R8 and
R6 (middle). The list of sequences re-visiting region R13 and hovering over the first row (right).

in R8 → R9 → R6; left side of the double tree). Additionally,
OR_old_driver scheduled all trains from R6 to R8 to transit via R9,
suggesting exclusive usage of parallel tracks for opposite directions
to avoid head-on collisions. RL_marmot also exhibits the strategy,
while RL_jbr_hse moves trains on the tracks from both directions
(green color in all nodes of R9 and R10 between R6 and R8), and
RL_netcetera uses only one of the two tracks (R10) exclusively.

Busy Junction: To investigate routes around the junction in R6,
we select it as the anchor in the double tree. From Figure 10 (left),

we observe many links on both sides of R6. It indicates that trains
are coming in and going out in all four directions—east (R7), north
(R5), west (R11), and south (R9 and R10). Hovering the node of the
anchor (R6), we see its repeated occurrence in the sequence R6→
R7 → R1→ R7 → R6 highlighted on the right side of the double
tree. Repeated visits by trains to an important junction could in-
dicate inefficient planning, as revisiting junction points could stall
the traffic. We also observe the orange outgoing edge at the bottom
right of the node of region R6, indicating that trains scheduled by
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RL_netcetera stayed on top of the junction or on connecting tracks
towards other regions. This insight indicates possible reasons be-
hind the bad performance of RL_netcetera (only 26 of 98 trains
reached their destination).

7. Limitations and Open Research Questions

Our approach allows focusing analysis on a user-defined anchor
and comparing event sequences based on categories. As shown in
the application examples, this already supports various relevant use
cases and provides meaningful insights. We tried to keep the data
model simple so that the approach stays broadly applicable and the
design of the visualization will not become overly complex. How-
ever, some assumptions regarding the data also restrict us in sup-
porting certain analyses. Moreover, the application examples also
revealed other limitations of the approach. We discuss these limit-
ing factors and translate them to open research questions that can
inspire future research.

How to better handle numeric attributes, without transform-
ing them into discrete and unordered categories? Numeric at-
tributes of the events can be used in our approach to define cate-
gories for comparison. This converts the often continuous numeric
scale into a discrete one and ignores the inherent order of the result-
ing discrete categories. This is acceptable often (e.g., focusing on
the last 15 minutes of a soccer match), but can be considered a lim-
itation of our approach in other cases. Among the authors, we have
discussed different designs for visualizing such numeric data in ad-
dition to categories, but possible solutions would make the diagram
significantly more complex and difficult to interpret. Showing one
additional numeric value per node is not an issue, however, in our
case, we would need to show a distribution of numeric values, split
according to the interactively defined categories to be compatible
with the category-based comparison. Displaying time differences
is a step in the direction of visualizing numeric attributes. How-
ever, while the temporal differences fit on the links as it describes
a characteristic of the transition, other numerical attributes would
require different encodings.

How to support the visualization and comparison of multi-
ple categorical attributes simultaneously? The interactive defi-
nition of categories allows for quickly switching between different
aspects of comparison. In the application examples, we already ex-
perienced that, in some cases, it would also be interesting to see the
categorical information about two or more different aspects at the
same time. For instance, it might be relevant to analyze a soccer
match for by categories of team and first/second half to identify,
for instance, that one team adopted the strategy of the other team in
the second half. If both categories are binary, like in this example,
we could translate them into a new categorical variable with four
cases. However, this approach does not scale to handle many more
variables and categories, as the number of possible combinations
grows quickly. Handpicking interesting combinations and group-
ing everything else in an Other category could potentially help with
this issue. Generally, the limiting factor here is the use of colors,
which restricts the comparison to about ten categories. While this
is a substantial gain over the maximum of two categories as in prior
research, support for even higher numbers of categories would re-
quire other channels and means to express category memberships.

How to simplify and aggregate the tree to support longer se-
quences of events and larger sets of sequences? Currently, our
approach is limited to event sequences consisting of up to about 30
events. If trying to show more, the horizontal space for each layer
would become too small. A straightforward solution would be to
cut non-branching sequences, making them explorable on demand,
or implementing horizontal panning where the view always starts
at the anchor, which would be the focus of most analysis tasks.
Integrating pattern mining techniques and visualizing the patterns
would reduce the length of sequences, however, would come at
the cost of significantly decreased interpretability. If not only the
lengths of the event sequences grow but also more and more distinct
sequences shall be considered, the complexity of the tree structure
itself might also become too high. We have added the query builder
to partially tackle this challenge, but it would need further capabil-
ities for vastly greater numbers of distinct sequences. On the other
hand, we could allow optional alternatives in the sequences to better
aggregate the sequences but would transform the tree data structure
into a directed acyclic graph, which leads to the issues we discussed
in Section 3. Introducing focus-and-context techniques (e.g., a data
lens [TGK*17]) might further improve the visual scalability. How-
ever, if aiming at analysis of event sequences at a large scale, an
additional overview visualization becomes necessary, potentially
with the double trees acting as an intermediate representation for
subsets of event sequences.

8. Conclusion

We proposed double trees as a visualization approach for abstract-
ing collections of event sequences focused around a user-selected
event of interest. This interactively set focus of analysis makes the
approach versatile regarding the studied analysis questions and, at
the same time, reduces the complexity of the visual representations
to an interpretable higher-level abstraction. We extended the double
trees with interactive category-based comparison of color-coded
categories of events and event sequences. We assume that the events
in the sequences carry type information and can be further catego-
rized based on other attributes and meta-data. As demonstrated in
our application examples, such data is relevant in different use cases
across various domains.
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